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3D Fluid Theory of the Plasma Cascade Instability

M. Blaskiewicz

BNL 911B, Upton, NY 11973, USA

The plasma cascade instability (PCI) [1, 2] is a proposed mechanism for microbunching in electron
beams without dipole magnets. Existing theory is limited to wave propagation that is orthogonal
to the advective compression direction. This note provides a theory allowing for wave propagation
in arbitrary directions.

The plasma cascade instabilty (PCI) [1, 2] is a proposed mechanism for microbunching in electron beams without
dipole magnets. If the theory bears out this process may well be very widespread, contributing to enhanced noise
in a variety of systems employing electron beams. The actual system is quite complicated and this note discusses a
highly simplified model.
Consider a homogeneous, infinite, electron plasma. We use Cartesian coordinates x, y, z, t. The unperturbed plasma

has a velocity distribution

v0(x, y, z, t) = x̂xωx(t) + ŷyωy(t) + ẑzωz(t). (1)

The unperturbed density obeys

∂n0

∂t
+∇ · (v0n0) = 0. (2)

Taking n0 = n0(t) yields

dn0

dt
+ (ωx(t) + ωy(t) + ωz(t))n0 = 0. (3)

Defining ωα(t) = Φ̇α(t), where the dot denotes a time derivative, gives n0(t) = n̂0 exp(−Φx(t)−Φy(t)−Φz(t)) . This
defines our time dependent unperturbed distribution. We will not dwell on how the backround velocity distribution
is generated and just mention it is a mixture of focusing from magnets, cavities and space charge forces. For cooling
systems with the beam propagating along z it is likely that ωz ≈ 0 but we keep it to allow for general calculations.
Now consider a pertubation v1(x, y, z, t), n1(x, y, z, t). We work to first order in perturbation theory so the force

and particle conservation equations are

∂v1

∂t
+ (v1 · ∇)v0 + (v0 · ∇)v1 = qE1/m, (4)

∂n1

∂t
+∇ · (v1n0 + v0n1) = 0. (5)

We are going to solve equations (4) and (5) using Fourier transforms with time dependent spatial wave numbers.

v1 = ṽ(t) exp[ikxλx(t)x + ikyλy(t)y + ikzλz(t)z] ≡ ṽ(t) exp[iΨ], (6)

where the time dependent functions λα(t) remain to be determined. We also take n1 = ñ(t) exp[iΨ]. Inserting these
in (4) and (5) and defining E1 = Ẽ(t) exp(iΨ) gives

∂

∂t

[

ṽx(t)e
iΨ

]

+ ṽxωx(t)e
iΨ +

{

xωx

∂

∂x
+ yωy

∂

∂y
+ zωz

∂

∂z

}

[

ṽxe
iΨ

]

= eiΨqẼx/m (7)

∂

∂t

[

ṽy(t)e
iΨ

]

+ ṽyωy(t)e
iΨ +

{

xωx

∂

∂x
+ yωy

∂

∂y
+ zωz

∂

∂z

}

[

ṽye
iΨ

]

= eiΨqẼy/m (8)

∂

∂t

[

ṽz(t)e
iΨ

]

+ ṽzωz(t)e
iΨ +

{

xωx

∂

∂x
+ yωy

∂

∂y
+ zωz

∂

∂z

}

[

ṽze
iΨ

]

= eiΨqẼz/m (9)

∂

∂t

[

ñ1(t)e
iΨ

]

+ ñ1(ωx + ωy + ωz)e
iΨ +

{

xωx

∂

∂x
+ yωy

∂

∂y
+ zωz

∂

∂z

}

[

ñ1e
iΨ

]

+n0(t)

[

ṽx
∂

∂x
+ ṽy

∂

∂y
+ ṽz

∂

∂z

]

eiΨ = 0 (10)
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It is now clear how to choose the λαs. We demand

∂

∂t
eiΨ +

{

xωx

∂

∂x
+ yωy

∂

∂y
+ zωz

∂

∂z

}

eiΨ = 0, (11)

which leads to

λ̇α + ωαλα = 0, (12)

where α = x, y, z. The solution is λα(t) = exp(−Φα(t)). Equations (7) through (10) become

˙̃vx + ωxṽx = qẼx/m (13)

˙̃vy + ωyṽy = qẼy/m (14)

˙̃vz + ωz ṽx = qẼz/m (15)

˙̃n+ (ωx + ωy + ωz)ñ+ n0(t)(ikxλxṽx + ikyλy ṽy + ikzλz ṽz) = 0 (16)

To close the equations we use Gauss’ law, ∇ · E = 4πqn. Since everything varies as exp(iΨ) ≡ exp(iK · r) we have

E = −
iK

K2
4πqn+Edrive,K, (17)

where Edrive,K is the spatial Fourier component of rQ/r3, the electric field due to a driving ion.
Now

Qr

r3
= −iλxλyλz

4πQ

(2π)3

∫

d3k
(kxλx, kyλy, kzλz)

k2xλ
2

x + k2yλ
2

y + k2zλ
2

z

eikxλxx+ ikyλyy + ikzλzz,

which is easily checked by taking the divergence, using Gauss law on the left side and the definition of the 3 dimensional
delta function on the right side.
To keep our dynamics correct we need to sum quantities according to

F1(x, y, z, t) =

∫

d3kF̃ (k, t) exp(ikxλxx+ . . .)

where F can be any of our small quantities. With this convention the terms in equations (13) through (15) are related
to the perturbed density and the external drive via

Ẽ = (kxλx, kyλy, kzλz)

{

−4πi[qñ+H(t)Qλxλyλz ]

k2xλ
2

x + k2yλ
2

y + k2zλ
2

z

}

. (18)

Where H(t) is the Heavyside function so that the ion is introduced at rest at t = 0. For cooling both ṽ and ñ vanish
at t = 0 so equations (13) through (16) are well posed ordinary differential equations. Numerically integrating these
equations as well as a Vlasov analysis are left for future work.
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